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Part I

Chapter I: Introduction

The Relativistic Vlasov-Maxwell (RVM) system is a nonlinear system

of first order partial differential equations that models the time

evolution of a collisionless plasma, e.g. a high temperature, low density

ionized gas. Numerical computation of solutions of this system is

prohibitively expensive in part because of the six-dimensional phase

space for the Vlasov density function. For computational feasibility, we

consider a version (RVM) in which the Vlasov density f depends on one

spatial variable, x, and two momentum variables, v, and

v2. This is the simplest version of the problem which retains the

hyperbolic structure of Maxwell's Equations and for which there is a

nontrivial magnetic field. We treat the case of a single species of

particles with distribution function f, in the presence ot a neutralizing

background with density n(x). The electric field is given by

E(t,x)=(E1(t,x), E2(t,x)) while the (scalar) magnetic field is denoted

B(t,x). The speed of light is c, and we assume that the rest mass and

charge of the particles are both 1. The particles move under the action of

their self-induced Lorentz force, F=(E+c-h,•xB), and the

objective is to track the simultaneous evolution of the density and the

fields, which satisfy the following Cauchy Problem:

fatf + AJraxf + (E+cIBMAVvf=O

(1.1) (RVM) 1atE1 =-41cji xEl=4np

1.atB=-caxE 2 atE 2=-caxB-471j2



where V = v(1+c- 21v12)-1 /2 is the relativistic velocity and M = 0 )
with Cauchy data

f(x,v,O) = fo(x,v) > 0

E2(x,O) = EF(x)

B(x,O) = BO(x)

The charge and current densities, p and j, are defined by

p(tx) = jf(t,x,v)dv - n(x)

j(t,x) = JVf(t,x,v)dv

All data functions are taken to be smooth and compactly supported, with

fo 2 0. The background density, n(x), in addition to being smooth and of

compact support, is neutralizing in the sense that

f p(O,x)dx = 0

x

We take EI(0,x) = 4nt Jp(O,y)dy as initial data for El.

In [2], Glassey and Schaeffer proved global existence of smooth solutions1
of this problem, their main result being that fo E Co (R 3) and

0 1
F_., BoE Co(R) imply the existence of a global, C' solution (f,E,B) that

satisfies the initial values f(0,x,v) = fO(x,v), E2 (0,x) = E2(x), B(0,x) -

BO(x) and whose components f,E, and B are compactly supported V t > 0.
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In [3], they proved convergence of a particle-in-cell method for

approximating solutions of this system. Their scheme (as well as other

typical schemes such as that used in [1] ), is limited by the constraint

imposed by the Courant-Friedrich-Lewy (CFL) condition on the size of

allowable time steps, resulting in enormously expensive computations.

CFL requires At _< Ax/c, since the speed of light, c, is the propagation

speed for the hyperbolic Maxwell system satisfied by E2 and B. However,

there are regimes in which this restriction is actually far too severe.

When the electromagnetic quantities vary slowly, it may be possible to

replace Maxwell's equations with simpler models that are elliptic in

nature, hence may lead to cheaper computation by allowing larger time

steps. ( See for example [5]. )

In this paper, we propose a modification of (RVM), denoted (RVM~),

that employs changes of this nature. The modifications are suggested

geometrically by the form of the integral representations of the Maxwell

fields E2 and B which result from solving the 1-D Maxwell system

{ atE 2 + caxB + 4nj2 = 0

atB + caxE2 = 0

The Riemann invariants are (E2 + B) and (E2 - B), and we find

(1.2a) E2(t,x) = 2 [E-(x-ct)+E2(x+ct)+B°(x-ct)-BO(x+ct)]

27cF+[j 2 ](t,x)

B(t) [E(t)E(x+ct)+BO(x-ct)+BO(x+ct)

23 -[j2] (t, X)

3



t

where _CC [j2 ](t,x) = J [j2(•,x-C(t-C)) ± j2(T,x+c(t-T))] dt

Treating the speed of light c as a parameter and allowing it to grow has

the effect of "flattening out" the cone integrals appearing in (1.2).

Formally, as c -+ -, the cone integrals become purely spatial integrals and

we are led to alternate field operators resulting in approximate fields E2

and B given by

(1 .3a) E2(t,x) E 0 0(1.3a) ~ ~ ~ :2tx= 1[2(x-ct)+E°(x+ct)+B°(x-ct)-BO(x+ct)]

2nEC+[jT2](t, X)

(1 .3b) B(t,x) = - [E2(x-ct)-E°(x+ct)+BO(x-ct)+BO(x+ct)] -

22c!j 2] (t,x)

x 00

where E-[JT2l(tx) 1 f jI2(t,y)dy ± c j2(t,y)dy
-c 

X

and j(t,x) = J •,f(t,x,v)dv is the current density obtained from
R2

the density function f of the modified problem. Note that the same

Cauchy data appears in both (1.2) and (1.3), which is natural given that the

approximation involved only the integral operators. If we omit the data

terms in the expressions for Ep and B, what remains, e.g. the integral

terms, are solutions of Maxwell's equations as modified with the Darwin

and quasi-electrostatic approximations. In the one-space, two-momenta

case, this means neglecting the atB and atE 2 terms in (1.1). However, if we
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make these simplifications of Maxwell first, the representations of the

solutions of the resulting system will not contain these data terms. As

will be shown later, the presence of these terms results in better (e.g.

1/c 2 vs 1/c) convergence of the solutions of the two problems for small

time. We propose the following modified version of (RVM):

- A •

atf + vlaxf + (E+cBM)-Vvf = 0

0 _< f°(x,v) E C o(R3)(1.4) (RVM ~)0

F_2(x) & B°(X) e C l(R)

The data, fo, E2 , and BO are considered known. We also assume a

smooth, compactly supported, neutralizing background density n(x), as in

(RVM). Charge and current densities are given by

S(t,x) = f f(t,x,v)dv - n(x)
R2

I (t,x) = f '(t,x,v)dv
R2

The electric and (scalar) magnetic fields are given by

x

E1-(t,x) = 4n f p'(t,y)dy
-05

5



E2 (tx) [E= - ct)j E (x+ct) + B°(x-ct) - BO(x+ct)1

- 2n 9cj[ 2](t,x)

B(tx) = [E(x-ct) E E2(x+ct) + BO(x-ct) + BO(x+ct)

_2n 9c[J 2](t,x)

We assume existence of a global, C' solution (f, E, B ). The proof is

straightforward and similar to the existence proof for the 1-D Vlasov

Poisson system, once the a-priori bounds obtained in Chapter II are in

hand.

In part I of this paper, we will show that solutions of the modified

problem converge in a pointwise sense to solutions of the unmodified

problem at the asymptotic rate of 1/C 2 . The main result of part I is the

following:

Theorem : Let (f,E,B) and ( f , E, B) be the global, C' solutions of (RVM)

and (RVM~) respectively, satisfying the same Cauchy data

1 01oCl( )
fo e CO (R3) and E2 , BOe C,(R).

For c sufficiently large compared to the initial data, there

exists a non-decreasing function D : [ 0, o) -ý [0, o-), depending

on the initial data but not on c, such that

6



II f(t) - f(t)I L D5 C for all t> 0

Part II of the paper describes numerical experiments designed to

corroborate this convergence rate and demonstrate explicitly the value of

the modified problem as an approximation to (RVM).

As described in Chapter VI, a particle-in-cell scheme was coded for

(RVM~) and output was compared with that obtained using the program

from [4]. Besides demonstrating the 1/c2 convergence rate of the

solutions of the two problems, the results clearly show that the modified

problem does not suffer from the CFL limitation - we achieved the same

accuracy as the Glassey Schaeffer scheme with significantly larger

timesteps.

Additionally, to demonstrate the value of the inclusion of the data

terms in the solution of the modified problem, we compared output with a

version of the modified problem in which these terms were omitted, i.e.

where the expressions for E2 and B are solutions of the system obtained

by making the Darwin and quasi-electrostatic modifications of Maxwell's

equations. We found that including the data terms improved the accuracy

of the solutions with very little increase in computation time. These

results are discussed in more detail in Chapter VIII.

Throughout this paper, we will use the following conventions and

notation:
.c is the speed of light. We always assume c _> 1.

*D will denote a generic positive constant which depends on

the initial data, but not on c.

7



*D(t) will denote a positive, non-decreasing function with

domain [0,oo).

-Partial derivatives will be denoted by subscripts. ( for

a
example ax -- •x )

-We will frequently abbbreviate the arguments in the

expressions for the characteristics, writing for example

X(s) and V(s) for X(s,t,x,v) and V(s,t,x,v).

-We will write f(t) for f(t,',-) and f(t,x) for f(t,x,').

-Finally, we will use the following norms:

For a scalar-valued function g=g(t,x,v),

IIg(t)II, = sup { Ig(t,x,v)l such that xE R and vE R2}

II g I 1• = sup { Ig(t,x,v)I such that t> 0, xE R and y R2}

Ilg(t)IIo, = Ig + II(axg)(t)II. + I0gMIL.

= IIg(t)II' + II(axg)(t)II•+ II(aV1g)(t)II,+ II(av2g(t)IIoo

For a vector-valued function H = H(t,x) = (Hl(t,x),H 2 (t,x)),

IIH(t)IL. = IIHI(t)ll. + IIH2(t)Il.

8



Chapter II : A-priori Bounds for the The Unmodified Problem

In their proof of global existence of smooth solutions for (RVM) with

c = 1, Glassey and Schaeffer used a standard iteration scheme,

convergence of the iterates being assured once a-priori C1 bounds on f, E,

and B are known. For the purposes of this paper, we need corresponding

bounds for the case where c appears as a parameter (c > 1). In particular,

we must determine which bounds can be taken to be independent of c. We

assume, for any fixed c > 1, existence of a global-in-time C1 solution (f,

E, B), compactly supported V t > 0. Proof of existence is omitted, since

the argument would be essentially identical to that in [2], using the a-

priori bounds we will find in this chapter, which are obtained following

the methods in [2].

A. Density Estimates

Define X(s,t,x,v) and V(s,t,x,v) by

r A
d X(s,t,x,v) - V (s,t,x,v)

(2.1a) {ds

X(t,t,x,v) = x

[dV(s,t,x,v) = E(s,X(s))+c-1B(s,X(s))MV(s)
(2.1b) ds

LV(t,t,x,v) = v

Here, X(s) and V(s) abbreviate, respectively, X(s,t,x,v) and

V(s,t,x,v). We immediately have a uniform bound on f(t,x,v),

since

9



d f(s, X(s,t,x,v), V(s,t,x,v)) = 0 by Vlasov, SO
ds

f (t,X, V) =f(t,X(t,t,x,v), V(t,t,xv))

= f(S,X(s,t,X,v), V(s,t,x,v))

= f(0,X(O,t,x,v), V(0,t,x,v))

-fo(X(O,t,x,v), V(O,t,x,v))

sup { f(t,x,v) :x c R,V E R2} fOI

B. Charge Conservation

Lemma [2.1]: Jf f(t,x,v)dvdx = ff fO(x,v)dvdx

Proof Integrating the Vlasov equation in v yields

f atfdv + f Vi axfdv + f [(E+c-'BMv')Vvfl dv =0

or atp + axl+ J[(E+cr'BMv)-Vvf]dv = 0

Lemma [2.2]: (E+c-'B Mv)-Vvf = Vv-[(E+c-'BMV)f]

Proof: Vv.[(E+c 1' BM )f] = Dv,[(El+c 1 BV2)f] + av 2 [(E2-C' By1 )f]

AA
=(E 1 +c-1BV 2)av1f + c-"fBavVA2

A A

+ (E2-C-1BV1)av2 f - c-lfBav 2 V1

=(E+c'BMv)-Vvf + cfB AvV-2 Aj

a A A V2 AV
But aV2 - 0V 1 +- 2(v+V 2) 2 1 2C2~+~

10



= 0 and the claim is verified.

Using the compact support of f and the divergence theorem then yields

(2.2) otp + oxjl = 0

Now j, is compactly supported in x Vt > 0, as follows from the definition

of j and the compact support of f. Integrating (2.2) over x then gives

at J p(t,x)dx = 0

Sat Jf [ f f(t,x,v)dv)-n(x)]dx = 0

SfJ [f f(t,x,v)dv-n(x)]dx = const

J [J f(t,x,v)dv -n(x)]dx = J [J f(O,x,v)dv-n(x)]dx

= J [J fO(x,v)dv-n(x)]dx

=> fJJ" f(t,x,v)dvdx = f" fO(x,v)dvdx V t > 0, which proves the

lemma, and establishes global-in-time charge conservation.

C. Field Estimates

(1) Uniform Bound for E1

We first establish that El(t,x) is uniformly bounded Vt > 0 and Vx,

with a bound that is independent of c. Integrating Gauss' Law for E1 with

respect to x, we get

11



x
El(t,x) = 4x j p(t,y)dy + const

-00

and hence
x

E1(O,x) = 4x J p(O,y)dy
-00

since the constant has been chosen to be 0 already. (the only choice

resulting in a finite energy solution). Therefore,

x
El(t,x) = 4n Jp(t,y)dy

-00

x
= 4x J [ Jf(t,y,v)dv-n(y)]dy

-00

Using the non-negativity of f and lemma [2.1], we have

I El(t,x) I -- 4fJ" f(t,y,v)dvdy + 44tf In(y)l dy

= 4nfJJ fO(y,v)dvdy + 44f In(y)l dy

sup IEl(t,x) • D,
x, t>O

by assumptions on the data, and we have a bound on E1 that is independent

of t, x, and c.

(2) Compact Support of E1L.L_

Let 4 be chosen s.t. fO(x,v) = 0 and n(x) = 0 Vx s.t. Ixi > ý, and consider

12



x

Ei(O,x) = 4n f [ JfO(yv)dv-n(y)]dy
-00

Suppose x > ý. Then
x

4n f(ffO(y,v)dv-n(y))dy = if f0(y,v)dvdy - f n(y)dy = 0

-00

by the assumption of global neutrality. If x < -

x x
f fO(y,v)dvdy = 0 = Jn(y)dy

-w -00

EI(O,x) = 0 for lxi >

(3) Uniform Bounds for E2 and B

We employ integral representations

1 0 0
(2.3a) E2(tX) 2 [E2(x-ct)+E 2(x+ct)+BO(x-ct)-Bo(x+ct)]

t-47Ej [j2(T,x-c(t-'C))÷12(T,x~c(t-,r))]dc

10 0
(2.3b) B(t,x) 2 [ E2(x- ct)-E 2 (x+ct)+B 0(x-ct)+B0(x+ct)

t
-4n f" [j2(C,x-c(t-'E))-j2('E,x+c(t-,:))]dc

0

13



By hypothesis, the data terms are uniformly bounded independently of c,

so it suffices to show that

t
sup I Jj 2(I,x±c(t-t))dt I is uniformly bounded.
xt>O 0

By definition, j2 (t,x) = JV2f(t,x,v)dv = 1 2 f(t,x,v)dv

j2(tX)I < •s I V21 f(t,xv)dv
1 +c-2 (v1+v2)

Lemma [2.3]: There exists a constant D, independent of c and depending

only on the data, such that

t
sup eo " , IV21 f(t,x±c(t-t),v)dvdtc < D

xl0 +C-2(V2+ V2)

0

Corollary [2.3]: The fields E2 and B are uniformly bounded : There

exists a constant D, independent of c, such that

1I E2 (t) Ilo0 + II B(t) Il10 -< D for all t > 0

Proof of the Corollary: By the integral representations of E2 and B, we

14



need to bound

t
sup fj2 Ex~~-,)d

xt >O

0

< D by the lemma.

Proof of the lemma We first derive an energy identity for Vlasov. The

relativistic energy of a particle is c24/1+c- 2 1vI 2 , so the energy density is

given by

ek = j C2 1 +C 2 1vl 2 f(t,x,v)dv

Letting 7 = /1 +c 2 1v1 2 and differentiating with respect to t, we have by

Vlasov and lemma [2.2],

atek = Jc2yatf dv
A Av

C2 y [ vlaxf + (E+c-IBMv) • Vvf ]d v

-ax f C2Vlfdvj- f c2y[ (E+c-1BM) 'Vvf ]dv

-ax "f c2vjfdv - J c2 y VV'[ (E+c-1BM )f ]dv

Integrating by parts and using compact support of f, we have

15



atk a 2Id 2 Ec'~^f Vyd

A

~tk=-ax f C2Vjfdv + C2 J ( (E+c-1BM v)f]C Vvyd

AA

-a fx C2V 1fdv + f2 [(E+c' 1B M )f ] ~dv

Now, since vx B)v= 0,

A A

(E+c-1BMv)f -7 v (E+c'( v x B))f -v^

-Ef v

E- Ev

> f [(E+c-1BMC) v $)dv = f Efvdv

= E-(Jf Qdv)

so atek = ax f C2V~fdv + E-j

From Maxwell,

-4njl atEi and -4ntj 2 = atE 2 + caxB, so

1
j - (atEi, atE 2 + caxB)

16



b1

E " = - (ElatE1 + E2 atE 2 + CE 2axB)

I1 1 E 1 2 + I E2 12 + cE2 axB]

1 at E12 - - (cE 2axB + c(axE 2)B - c(axE 2)B)

(2.)a 1 a(cE2B) + 1
(2.4) = - 8 a8IEI2 -a4n ax 4 c

1
But again from Maxwell, axE 2 = atB, so we can write the last term in

(2.4) as

1 c(axE 2)B = = = 1B tB4n 4n-(c at4n=•Bt

1 *1 1 B12
47 2 at 8n at

1 a 1 a=• E'j = 8K at (1E12 +1IB2) 4- ax (cE2B)

a a C V2 V + E2B) (IEI2 + IBI2)
=•k = a-x 4n a t E1 + B 2

Regrouping terms gives

(2.5) 4nek + (IEI 2 + IBI 2) = - -( 4KC2 j vlfdv + cE2B)

17



11
Let e = 4Kek + I (IE12 + 1B12) = 4nc 2 f I1 +c' 2 1vl 2 fdv + 1 ((El2 + 1B12)

and m = -4nc 2 J vjfdv - cE2B

Then by (2.5),

De am
at ax

which is the energy identity we seek. Continuing with the proof of lemma

[2.3], we integrate

De am
V =t ax

over a backwards characteristic cone with vertex (x,t) and interior T,

using Green's theorem:

JJae am
[at - ax ] dA = Jf Vx,t (-m,e)dA

T T

f (-m,e) .nds
aT

x+ct

f (-me) I(y,O)'(O,-1 )dy
x-ct

18



t
+ f( C)e (4 (txctt) . - 1 ,c(/+c2)]dc

+ I (-ml)I(X+C(t..,r)). 1\-C
0

0

+ f[(-m,e)I(,xc(t.))" 1 (-1 ,c)(-41+c2)]dt

t

which reduces to

x+ct t
(2.6) J e(y,o)dy = f [(ce-m)(t,x+c(t-t)) + (ce+m)(t,x-c(t-t))]dc

x-ct 0

Claim There exists a constant D, depending only on the data, such that

for all c >1,

•x+ct

f e(y,o)dy _• Dc2

x-ct

Proof of the claim By definition,

e(y,O) = .[(El(Y ))2 + (E2(y ))2 + (BO(y ))2] +

47rc2J-[ 1 +c- 21v12 fO(y,v)dv)

S, BO , and fo are smooth and compactly supported by hypothesis, while

0 is compactly supported as shown earlier. Hence e(y ,0) is compactly

19



supported in y , and

X+Ct X+Ct

f e(y,O)dy f [(E 0(y)) 2 + (EO(y) )2 + (BO (y)) 2 ]dy +

x~ + C t

4nC2 ffql+C-2lVl2 fO(y,O))dvdy

•5 0 + DC2

•5 Dc2 for cŽ> 1

and so by (2.6) we have

t
(2.7) f [(ce-m)(tr,x+c(t-tr)) + (ce+m)(T,x-c(t-,t))]dr •5 Dc2

Now ce±mn = C IEI12 +R(E2 +-B)2 + 47rcC2J[c j+c-21v12 +- v1]f (t,x,v)

We consider the integrand in the last term:

(c4I1 +C-2lVI2 +-vi ) (c4I 1 +c 21v12 + vj)
C41+clIV1 -V (c ý1-+C- 2 1v12 ± vj)

cV 1 +c-21v12  V, v1  C ý1-+c21v12 + IVIi

C2+2

>2 c 1+c-72 1 vi2
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Note that (v 21 - c)2 > 0 = IV212 - 2cIv 2 1 + C2 > 0 and so

V2 + C2

2c
2c Žt IV21

2+ 2V2 + v2 IV21

2c 1 +c-21v1 2  1+c- 2 1v1 2

which implies

(2.8) CV1+c- 2 1V1 2 + V1 > 1V21

N1 -+c21v12

Using (2.6), (2.7) and (2.8) and discarding the field terms, since they are

positive, we have

t

c2 J J [c-4 1+C- 2 1vl 2 ; vi] f(,r,x ± c(t-t)),v)dvdt < Dc2

tof Iv21 f(t,x ± c(t-tr),v)dvdtc < DC2= c0 1"•f+c. 21vl 2  _

t

sup f " 1v21 f(c,x ± c(t-t),v)dvdc <_ D
x t > 0 41 1+C- 21vI 2

0

for all x and for all t > 0, where D is independent of c. This proves

lemma [2.3].
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Summary The fields El(t,x), E2(t,x), and B(t,x) are uniformly bounded

for all x and for all t > 0. The bound is independent of c and depends only

on the data. These field bounds enable us to obtain bounds on the x-

support and the v-support of f.

D. Bounds on the Support of f

(1) v - Su.Oort: Let Pi(t) = sup ( lvi : 3 x s.t. f(t,x,v) * 01

Lemma [2.4]: There exists a constant D, independent of c, such that

P1 (t) < D(l+t).

Proof Integrating the characteristic equation for V gives

0

V(0,t,x,v) - v = J [E(s,X(s)) + c-1B(s,X(s))MV(s)]ds
t
t

v = V(0,t,x,v) + f [E(s,X(s)) + c-lB(s,X(s))MV(s)]ds
0

By the assumption that fo E Co(R3), there exists D s.t.

f(t,x,v) = fo(X(0,t,x,v), V(0,t,x,v)) = 0 whenever IV(0,t,x,v)l _> D.

A

Then, since M < 1, we may writeC --

t

(2.9) lvi < D + oJ (IIIEIL0 + IIBIL.)ds on the support of f(t,.,.).

< D (1+t) by the uniform field bounds.
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(2) x - support: Let P2(t) = SUP ( lxi: 3 v s.t. f(t,x,v) * 0

Lemma [2.5]: There exists a constant D, independent of c, such that

P2(t) < D(l+t)2

Proof: Integrating the characteristic equation for X gives

t

x = X(O,t,x,v) + V 1 V(s)l d s
f) N1+ c-2 lV (S)12

0

As in (2.9), using the compact support of fo, we may write

t

lxi -< D + lcIVi(s)2 ds on the support of f(t,-,.)
fýJ 1+c2 1V (S) 12

0
t

< D + JIVl(s)l ds
0

By lemma [2.4], we have

t

Ixl -• D + J D(l+t)ds < D(l+t) 2  on the support of f(t,',').
0

E. Bounds on p and j

Corollary [2.4]: Ip(t,x)l + Ii(t,x)l -• D(l+t)3 for all x and for all t > 0,

where D is again a constant independent of t, x, and c
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and depending only on the data.

Proof" From the definition of j(t,x), we have immediately:

Ij(tx)I < I Ivf(t,x,v)dv

< J Ivlf(t,x,v)dv

< f" D(l+t)dv
v-spt of f

< D(l+t)3 for all x and for all t > 0

For p, we have

p(t,x)l < j lf(t,x,v)ldv + In(x)l

< D(l+t)2 + D

< D(l+t)2 V x,t>0,

and the corollary is proved.

F. Estimates on Derivatives

We are now able to bound the derivatives of f(t), E(t,x) and B(t,x),

which will give us bounds on C' norms.

Lemma [2.6]: With the given assumptions on the Cauchy data, there

exists a non-decreasing function D: (0,oo)-- (0,oo) which is

24



independent of c, such that

I1f(t)llci + IIE(t)llci + IIB(t)llci <5 D(t)

Proof: We begin with bounds on the spatial derivatives of E and B.

(1) Spatial Derivative of El: Using Maxwell, assumptions on n and non

negativity of f, we have

axEl(t,x) = 41cp(t,x) = 4n (jf(t,x,v)dv - n(x))

I•axEl(t,x)l __ 4n j fdv + D

__ D -(radius of v-support of f(t,x)) 2 + D

_< D(t) by lemma [2.4]

(2) Spatial Derivatives of E2 _and B:

To obtain bounds on axE 2 and axB, we set

K±(t,x) = E2 (t,x) ± B(t,x)

From the integral representations (2.3), we have

t

(2.10) K±(t,x) = K±,O(xct) - 4n0 jf 2 (•,xiýc(t-¶))dc
0

where K±,O(x;ct) = E2(xict) ± BO(xi-ct)
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We estimate axK+ only, since the bounds for K- are obtained in a similar

way. Differentiating (2.10) with respect to x and using the definition of

j2, we have

t

(2.11) DxK+(t,x) = oxK+,O(x-ct) - 4n x v 2 f(tC,X-c(t-C),v)dvdt
0

Now IaxK+,O(x-ct)I = IaxE (x-ct) + axBO(x-ct)l __ D, since E2, BoCo (R).

As in [2], we introduce the following differential operators:

T+:= at+cax This is the derivative along one of the

characteristics of the Maxwell system, e.g.

T+f(,t,x-c(t-t),v) = f(t,x-c(t-T),v)
aT

A
S:= at+Vl ax

Note that by Vlasov and Lemma [2.2],

A

Sf(t,x-c(t-tC),v) = (at + voax)f(C,x-c(t-T),v)

= -((E+c-'BMV)" Vvf)I(xc(t)v)

= -(Vv'(E+c'1B M I)f)
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These can be inverted to obtain
A

at=cS-vT _T+-S

A and ax - A
c-v1  c-v1

Replacing ax in (2.11), we have
t

ax+= axK+'0(x-ct) - 4 V2(T+-S)f(tr,x-c(t-tc),v)dvdt

0iCV

t

= axK+, 0x-ct) - 47 AT~ [(!@,x'c(tt') ,v)-Sf(t[,x-c(t-tE) v)ldvdt
0

t

- xK+'0(x-ct) - 4nt AFŽ f(-Tx-c(tt,),v)dvdt
J _JcVI

0

-4nr 2AVv((E+c-l B M ) dvdE

A

Since f(t,-,) is compactly supported, c-v1 * 0, and the v-integrals are

non-singular.

axK= axK+, 0(x-ct) - 4n Aftxvd nVAfO,x-ct,v)dv

C_ f2V1ftCi dv

t

- 4x c A Vv-((E+c-1 B M f)I( (~Vdvdt

0
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We integrate the last term and use the compact v support of f to get

t

AA

AV - {{(EEc-BM-) B VM (Af) dvd

0

So we have

axK axK+'O(x-ct) - 4n V2f(t,x,v)dv) + 4n V2 f(O,x-ct,v)dv

V A

47{VV[*A**k}E+c-1 B Mv)f) dd

which implies

(2.12) IaxK+(t,x)I !5 D +4 Jf Af(t,x,v)dv + 47cJAY2LfO(x..ct~v)dv

4n f IvLrjIIIE+c'B MvII If(,r,x-c(t-,t),v)idvdti

since the spatial derivatives of EOand BO are uniformly bounded.
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The v-integrals are taken over a compact set, e.g. {v: lvi :5 D(1+t) },so
A

c-v *O0, and

A

(2.13) A !5 D(t) V t>O0
C-Vi

Also, we have
V A

VV A A V2 + A2  A

C _ V c-v1  (C- v1 )2

and so

(2.14) !g~(]i • Iv'~ + A2IV21lI
C l Ic-vtI (c-vi)2

Lemma [2.7]: IIvvI • 42, i =1, 2

Proof:

=IV i, (VIr (l) 2  v 2)3

( 4 1 + c 2 1 V J T - C j ( C 2 V 2 3 )

C4(1 +C-21v12) 3  =1,2j={1,2\

1 +c-2v 2

Now 1v 1 (xr +c2 0I)/so1F -+c21v12  (CT (J+-1VI) (1 .sc-21v12) 3 /2  s

1j+cý 21v IT (1 +C223I21 =C2I 1+C21VI 2
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^jV j :1 ,, (V 1V2)2 1/2

so IlvviII • 1+c- 2 1vl 2  C4(1+C_21v12) 3

__ 42 and the lemma is proved.

Then from (2.13) and (2.14) we have

(2.15) II A I < D(t)

Using (2.12), (2.15), and the bounds on f, fo, and the fields then gives

II xK(t) IL1, <- D(t) for all t > 0, D(t) independent of x and c.

A similar treatment (see remark on page 16 of [2]) yields

IaxK(t)lIoo < D(t), and the result is that

IlaxK(t)IllO _< D(t) V t > 0

Using the bounds on the fields themselves, we have

IIE2(t)11cIc , IIB(t)l c 1 _< D (t)

(3) Derivatives of Characteristics:

The next step is to bound MX, oV1 and WV2 , where c) can be ax, avl,

or v2.

Integrating (2.1) gives
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t

X(s,t,x,v) x f V, (ýt,xyv)dý
S

t

Vi (s,t,x,v) V, fi- [E1 (ý,X,(ý))+c-11 B(,X(ý)) V2(t)]d4
S

t

V2(s,t,X,V) =V2 -f [E ,()--1(,Xý Qd
S

We first consider the spatial derivatives. Differentiating with respect to

x, we find
t

aX(s) 1 f aX

t
DVd S) f - [axEj(4,X(t)) '- +

ax jax
S

c-1{B(4,X(4))axV 2(R) + axB(4,X(4)) aTx-VRjd

t
aV2(s)_ ra

ax -ax x i~x~)ax
S

X~t))a A 1 ()____4 
A

c-1{B(4,X()aV() + D--'B(4,X(t)) ax V~fd

Claim: IV~() • 2 iiavii where a can be ax, a~v,, or v
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A v
Proof: Let H(v) =v -421

A vi =,
Then H : R2 -+ R2 and Hi(v) = vi 1,

122

A A

So =i a(Hi(V)) = Vv(Hi(V))-aV =vV)a

(2.16) < 4ý-2I11aVI by lemma [2.7]

Taking absolute values, using (2.16), and the facts that c Žt 1 and I •i 1,

= 1,2, we may write
t

IaxX(5)I :5 1 + f 4/2 IjaxV(ý)Ijdý
S

t

S

t

S

Using the bounds on the fields and their derivatives, we have

t

Ia~X(s)l !5 1 + f 4-2 ljaxV(4)Ijd4
S
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t

IaxVi(s)I :5 J (D(ý) IaxX(ý)I + 4-2 D IJaV(ý)II)dý
S

t

IaXV 2(S)I :5 f (D(ý) IaxX(4)I + '42 D IIaxV(ý)II)dt
S

We add these three equations, and since se [O0t] and D(4) is a non -

decreasing function of ý, we have (using the triangle inequality on

IaXX(S)I + IaXV1(S)I + IaXV 2(S)I --Z 1 +

t

By Gronwall's lemma, then,

IaXX(S)I + IaxV1 (S)I + i-x'XV2(S)I :5 etD(t) = D(t) for all sE [O,t].

Now consider the vj derivatives. Differentiating with respect to v,

gives
t

av1X(s) f -Jv 1 Vj(ý)d4
S

t

avij~= 1 - J [ax+ c1(B())aX(4))Av2() +
S
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t

av~ -2S f [aERX)DjR - c-i (B(ý,X(4))av,^VI ~
S

V1 (4aB4X4)vX4)d

By the same arguments used above, we are led to

IavlX(5)I + Ia-V1Vi(s)I + IaV1V2(S)I •ý 1 +

f D(t)(tav1X(4)I + IaVV1V(4)1 + IDVjV 2(R)j)d4)
0

and by Gronwall,

Iav1X(s)I + IJaViV1(5)I + IaVV2(S)t •5 D(t), for all se= [O,t]

A similar argument yields the same result for the V2 derivatives.

(4) Derivatives of the Vlasov Density f:

The bounds on the derivatives of the characteristics enable us now to

bound the x and v derivatives of f(t,-,) independently of c:

axf(t,x,v) = xfo(X(O,t,x,v), V(O,t,x,v))

=fx(X,V)DXx(O,t,x,v) + Vvf 0(X,V).axV(O,t,x,v)
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S0

l axf(tX'v)I :5 11 fX1I ID IXX(O,t,x,v)I + IIvVvf0II IIDXV(O,t,X,v)II

Using the bounds on the derivatives of the characteristics and the

assumptions on the data f0, we have

(2.17) Ilaxf(t)II. •5 D(t),

Similarly,

Vvf(t,x,v) =Vvfo(X(O,t,x,v), V(O,t,x,v))

l IVvf(t,x,v)II :5 IIaxf 0ll" I]VvX(O,t,x,v)II + IIvVvf0Il, IIVVV(O,t,X,v)II

and so

(2.18) IIVvf(t)I0 <5 D (t)

(2.17) and (2.18) and the uniform bound on f(t,x,v) together give

Ilf(t)11c' <- D(t) and the lemma is proved.

The t - derivative of f is bounded by using the Vlasov equation, e.g.

AA

atf(t,x,v) =-vlfx(t,x,v) - (E+ci'BMv) -Vvf(t,x,v)

l atf(t,X,v)I • vii llfx(t)ll,00 + (IIE(t)11 00, + IIB(t)lO110 VI~I) IUVVf(t)11 00

and since vi• Ivil •5 D(t) on the support of f(t,-,), the bounds on fx and

Vvf yield
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latf(t)l :_ D(t) for all t > 0, with D(t) independent of c.

Remark:

Bounds on the t and x derivatives of j and p follow immediately from

the bounds on the t and x derivatives of f and the compact v - support

of f, using the definition of p as a v - integral of f. The result is

Ilaj(t)llo,, Ilap(t)I o -< D(t) for all t > 0,

where D can be either ot or ax and D(t) is independent of c.
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CHAPTER III: The Modified Problem

A. Modified Field Operators

We use the integral representations of the fields B and E2:

E2(t,x) = [F-(x-ct) + E0(x+ct) + B°(x-ct) - BO(x+ct)] -

21cE [j2] (t,x)

B(t,x) [E(x-ct) - E(x+ct) + B°(x-ct) + B°(x+ct)] -

2n [ (C 0 (t, X)

where
t

Sc [j2 ](t,x) = J [j2 (t,X-C(t-C)) ± j2(t,x+c(t-:))ldc
0

We define a modified field operator, Ec as follows:

x 001x 1
(3.1) S+ [g] (t,x) .= f Jg(t,y)dy f - Jg(ty)dy

-0o x

B. Difference Between Cc and CSc

By lemma [2.5], there is a constant D such that the support of f(t,',v) is

bounded by D(l+t)2 . Let Do be any constant > D.

Lemma [3.1]: For c > 4Do and for IyI -5 D0(1+t 2)
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D() if t ;- 4 D 0 / c

C2

P r o :(s C [J2] - E-' [ 21)I(t~Y) D (ttft < O

Proof: (CC+ 021 C-Ct 021) (t~) f j2 (T,y-q(t-tc))dc t (Cyct,)d
0 0

J(tyct-)d -- 00

CJfj2(t,yn~tt)dTl f ~0j2(t,ri)dn)
0 <> y

y

(S~D~ -~ 12)I) { 2 ('t -C t-i)dc- -c f j2 (t,T1 )dT1

y 00

± fJ2(t + ~yi)(t-'r)dr f- jJj 2 (t,ql)dri

y~c
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Y Y-ct

y +Ct 00

+ 2 fi( t + YL )-j 2 (t,'rj1]dT i 1 f j2(t,Trl~dTl

By the Mean Value Theorem,

J C C t C

Y-Ct 
00

and so we have c 2tT~f-0yc

(3.2) I((i] ~+[2 I :ty) f ~ Iad2(Ti,ri)Ijrj-yjdij +J~e+21 ýhl 1tY~ C2Y-ct

C2 JId 2(C2,7rOI ji1-y~dil +
y

Y-c t 00

C J~j2(t,Ii)Idqi + 1 j(~~d
-00Y y+Ct

Consider the first two integrals on the RHS. Recall, Nt20,-) is

compactly supported with support bounded by a non-decreasing function
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D(t). Note that '1, T2 C [O,t]. We may replace the intervals of integration

with (-D(t), D(t)), and the first two terms on the right in (3.2) are then

D(t) 1 D(t)C2_ " latj2(E1,11)IlTI-y dl jý_Df PtlaJ(2,71)11-Ydl

D-2- -D(t)

By the a-priori bound on Nd2, we have

Iad2(t,x)l - D(t) where D(t) is again non-decreasing, so we can

combine these two integrals as

1 D(t)_* ý-2 f D(t)lij-yjdTj

-D(t)

D D(t) D(t)
Dt -0(1) 1+lld

D (t)dD(t)*O2 Dt)+JJ~T

-D(t)

_< D(t)
c2 (lyl +1)

and since IYl -- D(1+t 2),

D(t)C c2

We now consider the other 2 terms on the right hand side of (3.2).
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Define 2(t) := x: 3 v E R2 s.t. f(t,x,v) # 01. Again, by the a-priori

bounds and the definition of Do, we have

(- Do(1 + t2) , Do(1 + t2 )) D ,2(t)

where D and Do are independent of t and c.

Given y r R, if (y + ctl, oo) r ,(tl) = o for some tj, then

(y + ct, oo) n 2 (t) = 0 for all t > ti, because the transport speed of f

is I~li < c. For the same reason, if (-00, y - ct2) n) A(t2 ) = 0 for some t2 ,

then (-o-, y - ct) n A (t) = 0 for all t> t2 .
4Do

Take c > 4Do and consider any (y,s) with cD < s < 1 and !yl < Do(s 2 + 1).

Then IyI - sc < IyI - 4Do

"< Do(s 2 + 1) - 4Do

"< 2Do - 4Do

=-2Do

< - Do(s 2 + 1)

So (--, IYI - cs) n A(s) = 0 and because of transport speed,

(--, lYl- ct) n I (t) = 0 for all t > s. Similarly, (IyI + ct, A) n £(t) =

for all t > s.

4D0

Hence for any (y,t) with t > c and Iyl <- D0(t2 + 1),

y-ct 00

j lj2(t,lI)Idll = J Ij2(t,1I)IdTi = 0
y+ct
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and I(E' , 1 - 9,4 •1)1(Y,)I • C2

,!DoIf t < c the contribution of the first two integrals on the right hand

D (t)
side of (3.2) is still bounded by C2 There is now a contribution from

the other two integrals, however. We obtain a bound on this by including

in the interval of integration the piece [y-ct,y+ct] and use the bounds on

Uj21 and its support to get

1_y-ct 1 0 o

fJ IJ2 (t,Tl)ldn + - J Ij2(t,ll)IdTi 1- f lj I2(t,n)ldIl < D(t)- C-00o y+ct

Result:

Dt 4Oo{ if t > c

I(Sc 11]- co(J2])l(Y,)I D(t) D t) < D t) if t < 4 D0

C2 C c c

and the lemma is proved.

C. The Modified Problem (RVM-)

We propose a modified problem in which the field operators .c+ are

replaced with the operators '+ , and in which the Cauchy data is the

same:
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AA

otT + Vlaxf + (E+c-"BMv)Vvf = 0

0 < f°(x,v) e CI(R3)(3.3) (RVM ~)0

E_.(x) & BO(x) e C0o(R)
0

The data, fo, E2 , and BO are considered known. We also assume a

smooth, compactly supported, neutralizing background density n(x), as in

(RVM). Charge and current densities are given by

p(t,x) = f f(t,x,v)dv - n(x)
R2

(t,x) = f (t,x,v)dv
R2

The electric and (scalar) magnetic fields are given by

x

El(t,x) = 4n f p(t,y)dy
-00

E2(t,x) = •[E(x-ct) + E2 (xc)+B~-t 0 xc)

- 2n c+[J 2 ](t,x)

B(t,x) = [Eý(x-ct) - E2(x+ct) + BO(x-ct) + BO(x+ct)

-27 E•c[- 21(t,x)
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Chapter IV: A-priori Bounds for (RVM-)

Assuming existence of a global, compactly supported C' solution f, we

obtain the following a-priori estimates:

A. Density Estimates

Define X(s,t,x,v) and V(s,t,x,v) by

* A

X(s,t,x,v) = V,/(S,t,x,v)
(4.4a)

X(t,t,x,v) = x

A

V(s,t,x,v) = E(s,X(s)) + c-ll3(s,X(s))MV1l(s)
(4.4b)

V(t,t,x,v) = v

where X(s) and V(s) abbreviate X-(s,t,x,v) and V(s,t,x,v). Then

Z)- -
as f (s,'X(s),'V(s)) = 0oas

=> f (t,;K(t),•/(t)) = f(t,x,v) = f(OX(O), /V(O)) = fo(X(O), V(0))

and since since foE Ceo(R3),

IIf(t)l = IIfll= D

(Non negativity of f (t,x,v) also follows from non negativity of fO.)
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B. Charge Conservation

We integrate the Vlasov equation in v to get

atfdv + vlaxf dv + f( + V v)F]dv = 0

Satp+3- 1- + J(- + c ) dv

R2

But (E B c-1Mv)Vvf = Bv"[f(E . c v1Bi)], and since f (t,,) is

assumed to be compactly supported, by the divergence theorem,

f ( g" + c-1 9M i)-Vv-f]dv = 0
R 2

and atl + axj = 0

We integrate in x to get

f'at•tdx + J axIldX = J at pdx, since

f axj ldx = 0 by compact x support ofj.

at (f pdx) = 0 => Jf (t,x)dx = const
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J [J f(t,x,v)dv - n(x)]dx = const f J[[J f(O,x,v)dv-n(x)]dx

=J f f -(txv)dvdx = f f f°(xv)dvdx, which is global charge

conservation.

C. Field Estimates

1. Uniform Bound on E 1

x x

E,(t,x) = 4x j "(t,y)dy = 4n fi[j (t,y,v)dv-n(y)]dy
-00 -00

Using the non-negativity of f and the assumptions on the data, we have

IJE1 (t,x)I < 4nJJ ff(t,y,v)dvdy + 4n J f In(y)Idy

= 44J fO(y,v)dvdy + 4ni f In(y)Idy

2D

First note that from

x 00
f j'2(t,y)dy +ycdy

Sc [T2](t1x) = - f T2 (t,y)dy
-00 cx A

we get, using the assumptions on fO and the fact that IV21 < J1
c
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l l 211(1,x)l - f J' 2(ty)ldy

1 ^ ~

II jIv 2 If (t,y,v)dvdy
C J

f Jf f(t,y,v)dvdy

= fJ fO(y,v)dvdy < D

It follows from the integral representations of E2 and B and the

assumptions on the data functions E2 and B0 (e.g. smooth and

compactly supported) that

0

1 E2(t,x)l !5 IIE211. + IIB011L + 2nD and

I5(t,x)l _ IIElIl + liB 011. + 2nD, V x,t>0

IIE211L and IIBIIc are uniformly bounded in t and x, and the

bounds are independent of c.

D. Bounds on the Support of f

(1) yv -Suppo : Let Pl(t):= sup {Ivl: 3 x s.t. f (t,x,v) # 0}

Lemma [4.1]: There exists a constant D, independent of t and c,

such that PI(t) < D(t+l)
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Proof: Integrating the characteristic equation for V gives

t A

v = [(o,t,x,v) + E g X(s)) + c-1 B(s)MV(s))]ds

and since fo r Co(R3), there is a constant D such that

F(t,x,v) = fO(,X(O,t,x,v),V(O,t,x,v)) = o, if IV(O,t,x,v)l 2! D

So on the support of f,

t

lvi -< D + f ( +llloo +lBllo)ds
0

_ D(t + 1) by the uniform field bounds, and the lemma is

proved.

(2) -Su•pp;ort: Let P2(t)= sup {xl : 3 v s.t. f'(t,x,v) # 0}

Lemma [4.2]: There exists a constant D, independent of t, x, and c, such

that P2(t) < D(t2+1)

Proof: Integrating the characteristic equation for X and using the
A

fact that v 1 I I gives:

tx ~f A
x = X(0,t,x,v) + 0 V 1(s)ds

0
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t

=xj __ D + I V (s) Ids on the support of f
0

t

__ D+ oJ IV(s)lds

"_ D + Dt(t+l)

"_ D(l+t 2) where D is independent of t, x, and c.

E. Estimates on Derivatives

(1) Spatial Derivative of E1

x

From El(t,x) = f '(t,y)dy,
-- 00

we get DxgE1 (t,x) = 4nr(t,x)

= 4(J f(t,x,v)dv - n(x))

=IaxE 1(t,x)I 1• 4 fJ f (t,x,v)dv) + D, since n E Cl0(R)

= 4 fv -f f(t'xv)dv +D

< 4D'D(t+1)2 + D

•5 D(t+2)2, where D is independent of t, x, and c.
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(2) Spatial Derivatives of E and B

Recall the integral representations of E2 and B:

12n
E2 (t,x) = 2 [data terms] - c J j 2(t,y)dy

B (t,x) = 2 [data terms] - C f j2(t,y)dy - J 2(t,y)dy

oxE2(t,x) is the sum of x - derivatives of data terms, which are

uniformly bounded by assumption, for example:

Iax(B°(x - ct)) = taxBO(x - ct)I - IIJaxBOLoo<- D, since B°E Clo(R)

=> IlaxE211L < D, independent of t, x, and c

For axB(t,x), in addition to the uniformly bounded data terms, we pick up

an extra term from

{2 4._n_- f 2(} xIX j 2 (t,y)dy - J2(t,y~dy = - 2(t,X)
-oo X

But c 2(t,x)I < -- v f (t,x,v)dvBut~ ~~~~~ C i2tX 5CfI'-

< 47c f f(t,x,v)dv

v-spt f
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< 4nD(D(t+I))2 by lemma [4.1]

< D(t+1)2, D independent of t, x, and c.

Result: I I XE2tl, 1 D uniformly in t and x, and

I Ix§(t)ll :- D(t+1)2 for allt > 0

(3) Derivatives of characteristics

We obtain bounds on aX, aVl and aV2 where D can be ax, av 1 or av2'

Integrating the characteristic equations gives

tf A
X(s,t,x,v) = x - Vl(4,t,x,v)dý

S

t A

VI(s,t,x,v) = vi - f E + Cl(4, (U)V2(4)]d
S

t A

V2 (s,t,x,v) = v2 - f E- 2(,X(0)C-1ciB(4,X(- )Vc(i)]dý
S

where X(t) abbreviates X(t,t,x,v), etc. We first treat the spatial

derivatives:

t
A

axx(s) = 1 -f ax•(t)dt
S
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t A

axv 1 (s) = -J ac(4~4)axU + C_[~tR4)x24 +
S

A

t A

aXV 2 (S) f la ~A (4)ak - C-1[B(4,x(w)axvl(w +
S

A

A A

Take absolute values and use 'i L A'21 < 1 (Also note that s c- [O,tI):
c 'C

t A

laxX(S)I •5 1 + fJ IaVj(4)Id4
S

f A

Iaxvi(S)I: f J{(iXE I + IaXBI)IaXX(4)I + -lla2Rld

t
f A

IaxV2(S)I : f {(iaxlf2i + lag~a () + c-1IBIlaxVi(4)Ijd4

Using lemma [2.7] and the a-priori bounds on the fields and their

derivatives, we may write

t

I axX (S)I 1 + f 412 IlaxV(4)Ildt
S
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t

IaxVi(s)I :5 f (0(4)Ia~i(4)I + c-lD4 2I1axV(4)II)d4
S

t

IaxV2(S)I •5 f I 4jx() + C1lD4'212amv~II)dý
S

Since we assume c Žt 1, we may disregard the c-' term. Also, since D(4)

is an increasing function of ý, D(4) •5 D(t) V 4 E [s,t], and we have

t

IX(5)I + Iax~i(5)I + IaxV-2(S)I •5 1 + f D(t)(ID XX(0)I + JI~xV(4)II)dt
S

t

• 1 +I(t)(Ia~x(R)I + iax~V' (~ID +)Jd
S

Gronwall's lemma then yields

IaxX(S)I + IaXVI(S)I + IaxV 2(s)i • eD(t)It-sI eD(t)t = D(t) v se [o,t]

and axX, axV1 , and axv 2  are all bounded independently of c.

Now consider the vi derivatives. Differentiating the characteristic

equations gives

t

av1X (s) f = V ~ 1Vi(4,t,x,v)d4
S
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and so by lemma [2.7], we have

t

(i) lav 1x(s)l : -f { (-2 Ilav1V(4,)lld),
S

A

Then, avVl(S) 1 - f {oaxE,(,X))Lav, (X) + C-B(),X(I))aV2() )
S

AA

+ V(R)axB(4,X(t))av,R(4)]}dý

t

So lav1Vl(S)l - 1 + f (laxE•()v+ +IIa (R)lvd ()l)
S

+ lax9(R)loolavR(4)l} dý

A

(using c>1 and c !5 1)

Now, using the a-priori bounds on B, axlg, and axl~l, lemma [2.7], and

the fact that D(4) is a non-decreasing function of 4, we have

t

(i i) lav 1Vl(s)l !5 1 + f D(t)(lav I (PR)l + IlavV(Qll)d4
S

Differentiating the equation for V2 gives
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t

avV 2 (S) f - (axlf 2(4,x(U))a",X () - C-1ff4,R) (VV1)
S

A

+ V(~xRX4)V()jd

and as before we may write

t

(iii) Iav V2(S)I •5 f D(t)(Iav IX(4)1 + Ilav1V(4)II)dý
S

Adding i, ii, and iii gives

t

01I R1 (S)I + Ia 1vi 1(5)I + 1av IV2(S)I :5 1 + f{D(t)(Iav 1X(4)I + IIaviV(4)II)d4
S

t

< 1 + fD(t)(IavlX- I++Ia 1 2~Id
S

By Gronwall,

GI -V IXMsI + Iav1 Vi(s)I + Iav1V2(S)I 5 eD(t)lt-SI !5 eD(t)t = D(t) V S E [O,t].

A similar argument yields the same result for the V2 derivatives.
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Chapter V. Comparison of Solutions

We have the original problem, (RVM):

^ A

atf + Vloaxf + (E+c-'BMv)'Vvf = 0

with given Cauchy data

f(0,x,v) = fO(x,v), BO(x), and E°(x)

all smooth and of compact support. The characteristics are given by

{.A
X(s,t,x,v) = Vl(s,t,x,v)

X(t,t,x,v) = x

V(s,t,x,v) = E(s,X(s)) + c-IB(s,X(s))M V(s)

V(t,t,x,v) = v

The modified problem, (RVM~) is:

atT + Vla•xf + (E + c_1BM-M).Vv = 0

with the same Cauchy data

fO(x,v), BO(x), and E°(x)

The characteristics for the modified problem are given by
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* A

X(s,t,xv) = V1

X (t,t,x,v) = x

* A

V(s,t,x,v) = E(s,X(s)) + c-' l(s,X(s))Mi((s)

V(t,t,x,v) = v

The solutions of the two problems at a point (t,x,v) are

f(t,x,v) = fO(X(O,t,x,v),V(O,t,x,v)) and

f (t,x,v) = fo(X(O,t,x,v),V(O,t,x,v))

Recall that by the a-priori bounds, there are c - independent constants D

and D such that the x-supports of f and f are bounded by

D(1 + t2) and D(1 + t2 ), respectively. Let Do = max(D, D).

Theorem [5.1]: There exists a non-decreasing function

D• 0,oa)-- [ 0,o) such that for c > 4Do and for all t > 0,

f~t) D(t)
II f(t) - f 1 M lo

Proof: We consider the difference of these solutions along the

characteristics of the modified problem. (Note that if IX(s) I-> Do(1 + S2),
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then (f - fIs = 0, so we take I X (s) I < Do(1 +S2)

d d
S(f - ~('(- = -f(S,X(s),V(S)) - 0

= atf(5,X(S),V(5)) + axf(s,x-(s),~V()) X4s) + Vvf(s,X(s),V(s))-V(s)

A

= atf(s, X(s) ,V(s)) + ?i (s)axf(S ,X(s) ,V(s)) +

A

[E~S,-())+ C-iBý(s,X-(S))MV'(S)] V~f(s , (s),V(s))

A A

= Vj(s)axf(s,X(s),V(s)) + [E(s,X(s)) + c- B(s,X(s))M V(s)].

A

Vvf(5,R(5),VS'())} + Vi(s)axf(s,R(s),v(s)) +

A

[~s,())+ lB(s,X(s))M V(s)I Vvf(s, X(s) ,V(s))

1 [9(s,X~(s)) - E(s,X(s))] + c-'(B-(s,X-(s))MV(s) -

A

B(s,X(s))MV(S))} Vvf(s , X(s),V(s))

Recall the a-priori bound IlVvf(t,w,)Ii. <. D(t) V tŽ 0 where D(t) is

non decreasing. Integrating from 0 to t,
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If-f (t. x,v) = (f fI(O,R(O),(O)) +

t A

of (~s, Xs)) - E(s,X(s)) + C-1 (B~(S,(s))M~V(S)-

t

11(f 1)I O lt l.! fIIlv~f(S)IL{(IIE(S1X(s)) - E(s,X(s))II +
0

A A

c-lIIB(s,X(s))MV(s) - B(s,x(s))MV(s)IIjds

t

:5 f 0(t) IIIE~(S,X~(s)) - E(s,X(s))II +
0

A A

c-'IIB(s,X(s))MV(s) - B(s,X(s))MV(s)II~ds

First consider 11 E(s,X(s)) - E(s,X(s)) 11:

IIE(s,X(s)) - E(s,Xk's))Il :5 IEI(sX(s)) - El(s,X(s))I +

1E2(S,X(s)) - E2(S,X(S))I
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R(s)

Now IEI(s,,(s)) - EI(s,R(s))I 14x Jf (p (s,y) - p(s,y))dy I
-00

X( s)
_< 41c f I p (s,y) - p (s,y)Id y

-00

X( s)
<54n f f2 If (s,y,v) - f(s,y,v) Idvdy

-00

< 4 fJJ IT(s,y,v)- f(s,y,v)ldvdy

:5 D(t) I IT(s) - f(s)If since f(s,',') and

f (s,',') are compactly supported with support bounded by a non-

decreasing function D(s)

Next, E2(S,X~) -Es,(s)) I=2nt I (iC[T2] - CC[02])1 I(SR(S))I

Triangulating, we write

2n I (i-•+[r - +[U2]) I(s,)I : 2 { I 1 ++U 21])l(, )1

+ I (•:cmi- +[CJ2]) I(s,X)I I

By lemma [4.1], we have
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S4Do

FC2 if s > 4
C2  C

0 (S) if s < 4D0o

C C

For the other term, we have

2x I(S[T21 +F-[ 2•c),•(l. -C f I ]2(s,yY) j2(S,y) Idy

- J f IJv211 F(s,y,v) - f(s,y,v)Idvdy

27 2f f IF(s,y,v) - f(s,y,v)Idvdy

< 27c D(t)I If(s) - f(s) I I .

where D(t) is cubic in t. So we have the following so far:

t rD---s'

(5.1) IIf(t) - Tf(t)I I I - D(t) J [D(t) I If(s) - T(s 11.+ +

c-0JIB(sX(s))MV(s) - B(sX(s))MV(s)CI]ds
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4Do

where the top member of the bracketed term applies if s _! and thec

bottom if s < c4D We now work on the terms involving the magnetic

fields.

A A

c-1I B(s,X(s))M-V(s) - B(s,R(s))M-V(s)lII
A

-¢II I M (s)ll IB(sR(s)) - B(s, X(s))l

A

Then, since M is just a rotation and < 1 we have

A

= c-1llv(s)II Ib(s,X,(s)) - B(s,R(s))l

< IB(s,X(s) - B(s,X(s))I

Using the integral representations of B and B, since the data terms

cancel, we get

IB(s,X-(s)) - B(s,X(s)) I = J (-aiJ_[j=] + 2C[J2-])lJI(,.))l

_2K I(S_[j 2 ] - E-_J2]) i,(sI +

62 -023 -

62



Again by lemma [4.1] we have

D (s) 400

C2 if S > c
27c - C 0I)1(S[R(2 ))< Ds) if s < 4Do

C C

Considering the other term, we have
X(s) 00

2n [I(J2c[ 2 )]- (r[i])Is) 27c f, C 2 (ty)dy = I2(ty)dy
CIO X (s)

X (s) 00

S f Jj 2 (ty)dy C J'j 2(ty)dy)

X (s) 00
2nc I Jf ( 2(t,y)- j2 (t,y))dy - (jT2 (t,y)- j2(t,y))dy

00 X (s)

X (s) 00
2n< c { i I j 2(t,y) - j2(t,y) Idy + J I J'2 (t,y)- j2 (t,Y) Idy }

-00 x (s)

2c f, j 2 (t,y) - j2(t,y) Id y

and by the same steps as before, this is

< 2nD(t) fi(s) - f(s)lIl
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A A

So from the c-1  BMV - BMV jI term, we pick up two additional terms

under the integral sign on the right hand side of (5.1), namely:

rD(s)
c2

21E D(t) if(s) - f(s)Ill +
P US)

C

Result:

C2

(5.2) Ijf(t) - f (t)Dt) IIf(s) f (s) + ds
D (S

0

where the top term in brackets applies when s >_ 4D0/c and the bottom

when s < 4Do/c.

4Do

Case 1: t< Then s< 4Do/c for all s o ,o,t] so the bottom term in

brackets in (5.2) applies, and

t

IIf(t) - f(t)II. !5 D(t){{ II f(s) - i(s) Il + (t) }d s
0

t 4Do/c
_D(t)[ f 1f(s) f()" "o+ Dtc d

0 0
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t

Dt D(t) f
D t + D(t) " f(s) -f(s) Ii ds

0

By Gronwall,

f~)D(t) D~t 4D0

(5.3) f (t) - f (t)I < OtC exp(tD(t)) C2 for all t < 4Do- 2-" C2  C

Case 2: t > c4. Then from s=0 to s= 4 ,the same argument

D (t)
applies, and the error is bounded by C2

1

For s [4Do/c , t] ,the 1- error term applies, and we have

tII~~~ ~ ~ f~)-~)Io (t)f ~c) *f M{ D(t)ll f(s)-f'(s)I11. + D(t) }d s

4D0/c

t

D(t) f D(t)II f(s)- Id(s)Ils + tD(t)
C2 +C

0

t

C c2 + f D(t)hI f(s)-f(s)ILds
0

By Gronwall, we again have

f(t)- f(t) ll - C2
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Result:
D(t)

(5.4) fl (t) - f(t) ll= C for all t > 0

and the theorem is proved. An immediate result is the following

Corollary [5.1]: Let S(t) = { x: there exists v with either f(t,x,v) # 0 or

f(t,x,v) * 0}. (So (- Do(1 + t2), Do(1 + t2)) z S(t).) Then

for all t > 4Do/c,

D (t)
11 E(t) - E(t) Ils + 11 B(t) - B(t)IIs -- C2

where I1 g(t) Ils denotes the supremum over all x r S(t) of g(t,x).

The proof follows immediately from theorem [5.1], the definitions of E, E,

B, B, and the c-independent bounds on the x and v support of f and f.
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PART 11

CHAPTER VI: Computing Solutions

A. The Program

The scheme used is of the type appearing in [3], e.g. a particle

method is used on the Vlasov equation while the fields are advanced by

using the exact solution representation applied to approximate solutions.

In [3], Glassey and Schaeffer proved that such a scheme for RVM is first

order in space and time. We take c=1 and begin by choosing a phase space

grid.

Let Ax, Avl, Av2 , At be > 0.

Define: Ca = { (x,v) : (z.Ax < x < (al+I)Ax, cz2Avl < V1 ! (a 2+1)Av 1 , 0a3AV2 <

v2 < (c 3+1)Av 2 }

and C' = { (a•i+1/2)Ax, (a 2 +1/2)Avl, (a3+1/2)Av 2 }

Let qa = fO(C')(Ax)(Avl)(Av2) -= JfOdvdx
a

C

( This will be the charge of a particle whose initial state is Ca. )

Let Cl = { a e Z3 : qa * 0 1 and note that Cl is finite by hypothesis.

Let E = Ax and define S, 8,, and E) by
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1 lxi if Ixi < 1
S(x)= '0 if lxi > 1

8,(x)= e-S(-lx )

X

EO(x) = J8.(y)dy
-00

Define a grid on space-time ([0,00) x R ) as follows:

tn = nAt, n = 0,1/2,1,3/2,...
kx = kAx, ke Z

To start the simulation, define approximate quantities (designated for the

moment by underlines) as follows: For all k c Z and a• Z3,

E(o,xk) = EO(xk)
k) B(xk)

B(0,x) = BO

X'(0) = (a1+1/2)Ax

V (tl/2 )= v(tl/ 2 ,0,Ca)

To define the simulation iteratively, assume that for some n, E(tn,xk),

B(tnxk), Xa(tn), and /a( tn+12) are known approximations of E(tn,xk)

B(tn,xk), x(to,0,Ca), and V(tn+l/ 2 ,0,Ca) for all k r Z and a e Z3.

At this point, in order to simplify the notation, we drop the tildas (which

designate quantities from the modified problem) and the underlines

(designating approximate quantities). For the remainder of this section,
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all quantities are approximate quantities for the modified problem.

First, advance Xa by defining

Xa(t) = Xa(tn) + (t- tn)Vl(t n1/ 2 ) V t r [tn, tn+l].

The next step is to compute and advance the approximate sources p and j2.

From f(tn+l,x,v) = qcS,(x-X(tn+l))(vV(tnl/2))
a

we get p(tn 1l,x) = _-qaB(x-Xo(tn+l)) n(x)
a

and j2 (tn~ ,x) = qVt

Next, the fields are advanced using these approximate sources. We know

p(tn+l,x) and j2(tn'l,x) for all x. To advance Ej:

k
x

El(tn+l,xk) = 4m Jfp(tn+1,y)dy
--00

k
x

= 4nJ f [1j_. qxtS(y-Xa(tn+l)) - n(y) ]dy
-0 a

Xk XkkX xk

= 41c jqa fJEyX-Xa(tn+l))dy - 4nt Jn(y)dy
a -00 -400

k
X

= 4n •qcLO(xXa(tn+i)) - 4n J n(y)dy
a -O
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To advance E2 and B using the approximate source j2, we employ the

integral representations to get

E 2 (tn+l,xk) =I [E E 2 (xktn+,) + E 2 (xk+tn+l) + BO(x k_tn+) - BO(xk+tn+l)]

- 2n7f j2 (tn+l y)dy

(tn+l,x) = [E(xktn+l) E(xk+tn+l)+ BO (x k_tn+l) + BO(xk+tn+l)]

Xk 0

-7[fjJ2( n~,y)dy f j (tn +1y)dy]- 1k
-CI X k

The data terms are known. To treat the integrals, we proceed as follows:

24c f j2 (tn+l ,y)dy = 21c f[YqaV"(tn+l/2)•(y• tnol))]dy

a

= 21c _,qj" A^a n 1/ (YX,(tn+l
= v2 (t +q)[ry- ))]dy

a

= 2c -qaVV(tn+1/2)J 8(y-Xa(tn+l))dy
a

= 2•_,q^a(tn+ 1 2)

a

and for the integrals in the expression for B, we have
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J'j2 (tn' ,y)dy -t A[ qa (tn+1/2)as(y-xa(tnl+ ))]d

a

=t ~ [ Aqca(tn+1/2)Jex.x, n+)

and f j 2 t' ,Y)dy ft I[qaV t+12)6(Y-xa(tn+ 1))]d y
xk xk a

= qa A c(tn+1 /2 ) f8,(YXa(tn+l)d

at k
x

A qaV(tn+1/ 2 )[1 - XX~t~

a

The result is that the fields are advanced using

k
x

El (tn+l, xk) =4n lqaEOE(x-Xc1(tn+i) 4n f n(y)dy
a -C~

E2 (tn~l ,xk) = [E I(Xk~tn+l) + E' (Xk+tn+ 1) + BO (Xk~tn+1) -BO(x k+tn+l)]

-2 7c Iq av (tn +1/2)

B(tn+1, xk) = -[E I(Xk~tn+l) - Eo (x k+tn+l) + BO (x k~tn+l) + B0(x k+tn+l)]

+ 27c lqaVa(tn + 1 2 ) [1 - 20 (XXa(tn+l))
a
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We now define the fields E(tn+l,x) and B(tn'l,x) V x r R by linear

interpolation:

B(tn+l,x) = • B(tn+l,xk)EsE(x-x k)

k

with similar expressions for E1 and E2 . The final step is to advance the

momenta. We take

=.n+/ V~(~"+ AtE 1 t~ 1 ,X t~ )) +
Vla(tn /) =Vlt(tn+1/2)+AE (tn+l Xa(tn+l+

At B(tn+l'Xa(tn+l))[VA(tfn+l/ 2 ) + L(tn+3/2)]

Similarly,

V2(t 3 /2 ) = Va(tn+1/ 2 ) + AtE 2 (tn+l,Xa(tn+l))-

At B(tn+l',Xo(tn+l ))[Vl(tn+1'/ 2 ) + 1(tn+32)]

Or, as a system,

V (tn+3/ 2 ) = Va(tn+1/ 2) + AtE(tn+l,Xca(tn+l)) +

A--t B (tn+l'xaz(tn+l))i [VA (tn*1/2)2 + Vl( tn+3/2)
2t~t+ V1 +

This nonlinear system is always uniquely solvable for V0 (tn+3/ 2 ) and this

completes one step of the scheme.

The program was tested extensively, first by comparing against single

particle problems for which exact solutions could be computed, and then
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by generating steady-state solutions ( see appendix A ) which also

provided "exact" solutions against which the program's output could be

directly compared. We found the scheme to be better than first order

accurate in x,v, and t, but not quite second order.

73



"*1

CHAPTER VII: Numerical Experiments

A. Scaling

The analysis of the convergence of solutions of (RVM) and (RVM~) as

a function of the (increasing) parameter c was necessarily done with c

appearing explicitly. We hoped to demonstrate this convergence by direct

comparison of computed solutions of the particle scheme coded for the

modified problem with those produced by the Glassey/Schaeffer scheme

from [3], given the same Cauchy data. A complication is that in [3], the

speed of light is taken to be 1 (as are the charge q and the electron rest

mass m) and in order to compare the output of the two programs when

provided with the same data, we re-scale the modified problem to achieve

c = 1. (See appendix B) The analog of the parameter c becoming large in

the unscaled problem then is the v-support of the data (and solutions)

becoming small in the scaled problems.

B. Data

After preliminary tests on simplified problems (for instance problems

w BO 0), we analyzed results with 2 basic sets of Cauchy data,

providing a "symmetric" problem and an "asymmetric" one.

1. Symmetric Problem

For the first problem, the data is as follows: Define

(7.1) fo(X,V 1,V2 ) = [(1-X2)(1-V12)(1-V22)] 3  for Ixi < 1, IvI < 1, 1v21 < 1

and fO = 0 otherwise.
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1

Then, since J(1-s 2 )3 ds 32 vve see that
-1

f fOdv = 35(11-X2)3 for lxi < 1 and 0 for Ixi 2t 1

Define n(x) = (32)(1-X2)3 + 2x(1-x2)5

Then the condition of global neutrality is met, since the first term

in n cancels with J !Odv and the second term is odd, hence has

integral zero. Note also that the smoothness requirements on the

data are met.

As data for E2 and B, we choose

= a1(1-x2)
3

BO = a2(1-x 2 )3

where the parameters al and a2 allow us to adjust the size of

the data.

The above is for the unscaled problem, i.e., the case in which

the data are fixed and c is allowed to increase. For purposes of

computation and comparison, we scale to c=1 and allow the

support of the data to decrease. As discussed in appendix B, we

take, using bars to designate quantities in the c=1 problem,

75



fO(x,v) - c2 fO(cx,cv)

=C2[(1-C2X2)(1-C2V12)(1-C2V22)] 3 for lxi, vii1, Iv21 <cc

and fO = 0 otherwise

2(x) = c (1_c2X2) 3

O (x) = - (1-c2X2) 3

Also,

ni(x) = n(cx)

(32 (1-C2X2) 3 + 2cx(1-C2X2) 5 if lxi < and

ni(x) = 0 otherwise

It is clear that allowing c to increase in the unscaled problem

corresponds to the support of the data in the scaled problem
1

decreasing like c

2. Asymmetric Problem

In the second problem, the data functions above are shifted as

follows:

We translate fo as given in (7.1) by 1 in all three coordinate

directions in phase space.
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fO(x,v) = [(1-(X-1)2)(1-(V1-1)2)(1-(V2-1)2)]3

if 0 - X, V1, V2 < 2 and

fo = 0 otherwise

2

Then [1-(S-1)2]3 ds = 32 and we define

n(x) = (•55)(1-(x-1)2)3 + 2(x-1)(1-(x-1)2)5

and, as in the symmetric problem, we have global neutrality.

In a similar way, we set

_ = a1(1-(x-1)2)
3

BO = a2 (1-(x-1)2) 3

In this case, the initial conditions provided for the scaled problems

are

fO(x,v) = C2[(1-(CX-1)2)(1-(CV1-1)2(1-(CV2-1)21J3

2
if 0 _< x, v1, v2 2- and 0 otherwise.c

E (x) =

= a_2 [1.(0X_1)21]3
BO C
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Also,
"132,2 r 3  r 5

nx)= W F-3) [1-(cx-1)2 + 2(cx-1)••-(cx-1)2J

2
i f 0 _ x2_

c

and n (x) = 0 otherwise.
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Chapter VIII: Summary of Results

A. Expected convergence rates

In attempting to observe the convergence rate of the solutions as c

increases, we compared the values of the fields E2 and E2 or, the union

of the support of f and the support of f, i.e. where there is charge.

(Recall that E2(t,.) is not compactly supported.)

We chose values of c of 25, 50, 100, and 200, and compared the

outputs of the two programs at t = 0.08. Since the scheme from [3]

operates "at the CFL boundary", e.g. Ax = At, a balance had to be struck

between a small enough Ax (which determines the number of particles)

for good resolution, and a reasonable number of timesteps to avoid

excessive run times. We settled on total particle numbers of 64,000 for

the modified program and 59,319 for the unmodified one, (The

discrepancy is due to a slight difference in the way the programs

initialize the particles) with corresponding Ax's ranging from 0.002 for

the c=25 runs to 0.00025 for c=200. With At = Ax, this resulted in 10

timesteps for c=25, increasing to 320 timesteps for c=200.

We were interested in documenting the following 3 main results:

1. Convergence of solutions of the two problems as c grows.

According to corollary [5.1], we should observe

II E2(0.08) - E2(0.08) II -<D

This result applies to the unscaled problem. For the scaled

problems, we have

E 2 (t,x) = c-1 E2 (t,cx)

E2(t,x) = c-lE 2 (t,Cx)
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so II E2(t) - E2(t) II - ICE 2 (t) - cE 2 (t) IIS

D(t)= IIE 2(t) - -2(t) I Is C3~

2. Avoidance of the CFL restriction in the modified problem,

e.g. attainment of comparable agreement with the

program for the unmodified problem when the modified

program uses much larger timesteps.

3. Improvements in accuracy in solutions of the modified

problem over those computed without the data terms

present in the solution representation. A significant

difference here would demonstrate the value of the

appearance of the data terms involving the original Cauchy

data, which again would not be present were the Darwin

and quasi-electrostatic modifications of Maxwell's

equations made first.
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B. Results

We first give results for the symmetric problem.

max 1E2-'21 max 1E2-E21 max IE2-E 21
- - with no col6

c At with Ati=At with large At data no col3data terms

25 0.002 3.514E-03 3.532E-03 1.347E-02 3.8

50 0.001 7.120E-05 49.3 7.295E-05 1.680E-03 8.0 23.6

100 0.0005 9.057E-06 7.9 9.471E-06 2.102E-04 8.0 23.2

200 0.00025 1.135E-06 8.0 At = 0.004: 2.629E-05 8.0 23.2
1.180E-06

At = 0.008:
9.546E-06

Remarks 1. Convergence rate - Column 4 shows that as c is doubled, the

solutions converge at the rate of 1/c2 , as predicted in

Chapter V.

2. Avoidance of CFL limitation - The value of At used in the

c=25,50,100 runs was 0.008, which in the modified scheme

yielded the same accuracy as the CFL-limited unmodified

scheme. For the c=100 runs, this gives a factor of 16 in the

size of the timestep. In the c=200 run, we achieved the

same accuracy with At =0.004, which is again a factor of

16 better than the unmodified scheme.

3. Inclusion of data terms - Column 8 shows a factor of

approximately 23 in the accuracy of the solutions when the

data terms are present in the solution representation vs
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when they are omitted.

The analagous results for the asymmetric problem are

max IE2-'21 max 1E2-E21 max 1E2-'21
with no Co16

c At with A-t=At with large At co13data terms

25 0.002 4.603E-03 4.630E-03 1.443E-02 3.1

50 0.001 1.337E-04 33.4 1.408E-04 1.762E-03 8.2 112.8

100 0.0005 1.588E-05 8.7 1.650E-05 2.177E-04 8.1 13.7

200 0.00025 1.916E-06 8.3 At = 0.004: 2.706E-05 8.0 14.1
1.972E-06

At = 0.008:
1.016E-05

Remarks 1. The 1/c2 convergence rate is again shown by the entries in

column 4.

2. Allowable At is again 16 times as large as in the

unmodified problem.

3. Although not as great as for the symmetric problem, the

increase in accuracy resulting from the inclusion of the

data terms is still better than an order of magnitude.
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Appendix A: Steady State Solutions for (RVM)

We seek a solution of the time - independent Vlasov equation (with c = 1)

A A

(A.1) vlaxf(x,v) + (E(x) + c1'B(x)Mv)'Vvf(x,v) = 0

We impose the condition E2 0. Since in the time - independent (and 1

space, 2 momenta) case, Faraday's Law of Induction becomes

)xE2 = 0

E2 const, and E2 0 is the only finite energy solution. The

equations of the characteristics are then

* A

X =V 1

* A

V1 = El(X) + V2B(X)

A

V2 = -V1B(X)

Since E1 is an electrostatic field, there is a potential, ELL, such that

El(x) = -'LL(x)

We introduce 60, an anti - derivative of B, e.g.

B(x) = "'(x)
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Consider the quantities

v2 +

Along characteristics of the time independent Vlasov equation, these

quantities are conserved:

d (X(t),V(t))= ax)x + vPg .V
dvt

• V-V
= 'LL(X) X + iIT+Ti2

A " A *

A A

---Vl'Vl + V2 -V2 + W. X X

A +• A • I()]+A AA
V (X) + V2"(X + V2 (-VlB (X))+ U (X)V 1

=0

dl

j (v2(t) + WO (x(t)) = V2 + 6 '(X) X

A

-Via• (X) + B'(X)V01

=0

It follows that f(x,v) - g(gA..) is a solution of (1) for any (sufficiently
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smooth) function g.

The potential IU, satisfies Poisson's equation:

-IL = 4up =4n(jfdv-n) or

(A.2) -U"(x) = 47[ f g(1+jv12 + 4U.(x), v2 + (x))dv n(x)]

In the time - independent case, Ampere's Law becomes

-axB = 4nj2, so 8 satisfies

-% =47j2 = 47t v2fdv, or

(A.3) - "• (x)= 4n v2(9 +vl2 + UML(x), v2 + 8 (x))dv

We have then equations satisfied by Ui and 8 and the task is to find

U.L, "• , g, and n so that (A.2) and (A.3) are satisfied, neutrality holds,

and the appropriate requirements for compact support and (to the extent

possible) smoothness are met.

For simplification, we will require (A.2) and (A.3) to hold on (0,1). The

various functions appearing will be defined on (-1,0) as even or odd

extensions, and outside (-1,1) as constants. With these requirements in

mind, we impose

(BC) 1,(0) = U,(1) = 6 (0) = O• (1) = 0
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I., and 63 are extended evenly on (-1,0) and as constants on R\(-1,1)

as follows:

.(x) =i.(1) =-O, IxI > 1

U,(-x) = '.L(x)

•(x) =0(I), 1Ixl> I

63 (-x) = 63 (x)

For n, we require

n(x) = 0, IxI > 1

n(-x) = n(x)

On g, we impose the condition

g(F,•)=0 if 9__1

Note that this ensures the compact x-support of f, since

lxi - 1 => '.L(x) = 0

g = "•J- I lVIl2 + U. > 1

=• g(9,P) =: f(x,v) = 0
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With these definitions, (A.2) and (A.3) are satisfied V x. Note also that

the neutrality condition is built into the boundary conditions, since

j pdx =1/4n Eldx = • (El(1) - E1(-1))

1 (-u'(-1) -t(1)) = 0

We now proceed to choose g. Let

v + 2v2 + 6+,2) ()

With this choice, we find

JV2fdv = V2 v 2( + +V2 69)

Now +=IV 1v2 + .1< 1 <- Tl+-IV2 < 1 -LU

87 l+I2 < (1-U)2

C: IV12 < (1 -UL)2-
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<I vi < /(11-UL)2 - 1

Note that if UL < 0, this is always defined. The integral becomes

V2 (v + 2v263 + 03 )dv
IVI < (1-U.) -

V2= 2

Ivl (,_U )2_-I

= 2n6 [(1-U )3 - (1-11) + ]
and the equation for 6 becomes

(A.4) --L 6 n [ [((1'(X))"3 - 3(1-(LL(X)) + 2163 (x),47c

when Ud(x) < 0.

We will also need to evaluate J fdv:

ffdv= f (V2+ 2V2 2 +6 3 2)I(, td v

- f 2v + 63 2)dv
Ivi < 4\ (l.•,)2-1
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which gives

(A.5) J fdv 4+ R 2((,

Next, we choose

r -A(1 -x 2 ) 3  if lxi < 1
tL(x) = flx

0 if 1Ixl -

where A is a parameter whose purpose will be explained shortly.

Inserting this into (A.4), we have

(A. 6) 8(x) - (Y(x) 6B (x) where

f(1 +A(1 _ X2)3) 3 - 3(1 +A(1 -X2) 3 ) + 2 if lxi < 1
0 if lxi > 1

Comment: Different choices of g can simplify the equation for 6". For

example, if g = (C+t,)I(1) where C is a constant chosen to force

non-negativity of f, we obtain (using the same 1L), 6 (x) = 1(x) where

X; is a 16th degree polynomial in x. This can be integrated twice to find a

closed form solution 6" (x). It turned out, however, that this solution

resulted in excessive amounts of charge present to maintain the steady

state. Computation of the fields involves subtracting an integral of the
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background ion density from an integral of the electron density. Since

these turned out to be large numbers, an extremely fine refinement of the

mesh (resulting in a prohibitively large number of particles) was required

to resolve the fields. The above choice of g was deemed the best after

much experimentation. To compute a solution of (A.6), we use a modified

shooting method. We choose (arbitrarily) G" (1) =1 and require 8 (1) = 0.

We solve an initial value problem with this data specified, and vary the

parameter A until we achieve a zero slope at x = 0. 6 is then extended

as described at the beginning of this section.

The difference scheme used is

+

ak+1 -2 a6 k +ak-1i R k
(Ax) 2  3 ak(x)ak

or - k-1 2B k _ k.1 872

where 1 =anr= 1, A and we try to achieve 61 "

With n = 500, the value of A required to achieve the boundary conditions

is found to be A = 0.808195. At this point, we consider 2 a known

function. In practice, we have 6" at 500 mesh points in the interval

[0,1]. In the program, where required, values of B" at intermediate

points are linearly interpolated, while values of B = are obtained using

the Mean Value Theorem.

Having found , we are able to determine n. For Ixl < 1, we have from

(A.2):
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n(x) = Jg(.lvI2 *+U,v2 *+6)dv+-I- .L (x)

4n

Using (A.5) and substituting in for 11 and t , we have

n(x) = • [(1+A(1-x2)3) 2 - 112 + n• 2 (x)[(1+A(1-x2)3) 2  1]

3A3 A (1-x2)(5x 2-1) for Ixl < 1

and n(x) = 0 for IxIl--1

Note also that the finite energy solution of the steady state RVM problem

also solves the steady state version of the modified problem, (RVM~),

with the condition E2  0. To show this, we write steady state (RVM~)

in integral form:

A -"

VxJ"f + (E +BMv)'Vv = 0

x

El(x) = 47L J" '(y)dy
-00

E2(x) = -24f j2(y)dy

x 00

6(x)= -2n [ fji 2(y)dy f J J2(y)dy]
-00O x
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The requirement E2 = 0 means

x

B(x) = -4n f J 2 (y)dy
-00

and the two problems are identical.

Appendix B: Rescaling to Achieve c=1

Suppose (f,E,B) is a solution of (RVM) for some value of c, i.e.
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A A
atf(t,X,V) + vDxf(t,x,v) + (El(t,x) + C-lV 2B(t,x))av~f(t,x,v)

+(E2(t,X) v c1vB (t, x)) av2 f(t,x,v) =0

where p(t,x) f f(t,x,v)dv - n(x)

j(t,x) = J Cf(t,x,v)d~v

A V

x
EI(t,x) = 4nc f p(t,y)dy

-00

atE2 (t,X) = -caxB(t,x) - 4ntj2 (t,X)

DtB = -caxE2 (t,X)

We re-scale as follows:

Let t = t, x =cx, V = CV and define:

f(t,X,V) -c
2f( t,-X,-V) . C2f(t,CX,CV)

n (x) = n(x) =n(cx)
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p,(t,x) f J f(t,x,v)dv - (x)

f JC2f(t,CX,cv)dv -n(cx)

f JC2f(t,cx,W)C-2dw - n(cx)

f f(t,cx,w)dw - n(cx) =p(t,cx)

A A

j(t,X) fJ (t,x,v)dv where V + IV1

A

f AV ~ tC
= v cf~t~c,cv)dv

AA(CV) J A

AA
A AV

Noteta (v) C_ 1CV andsine = cv,

A
A A

v C c-w and we have

j(t,x) f J 'f(t,cx,w)dw

c- cj(t,cx)

94



Now define
X

El(t,x) = 4n f p(t,y)dy
-00

x

= 4n J p(t,cy)dy

cx

= 4n fp(t,z)cldz
-00

cX
= c-14n Jp(t,z)dz

-)00

= c-lEl(t,cx)

Similarly, define

E2 (t,x) = c'lE 2(t,cx)

B(t,x) = c 1'B(t,cx)

Then ( f,E,B) solves (RVM) with c = 1. To show this, we first

demonstrate that i 2 and -b are solutions of the one dimensional

Maxwell System:
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atE 2 (t,X) + aXE3t,x) =C'l[atE 2 (t,CX) + caxB(t,cx)]

-ci [-4nj 2 (t,cx)]

- 47rJ 2 (t,X)

DtB(t,x) + DxE 2(t,X) =c-1[atB(t,cx) + caxE 2(t,CX)]

-0

We also have ax El(t,x) = 47c p(t,x) by definition, and it remains to show

that the Vlasov equation with c = 1 is satisfied. Toward this end, we

first compute

a t f (t,x'v) =at [ C2 f(t,CX, CV)] C2 catf (t,C X,C V)

aj (t,X,V) =ax[C2f(t,CX,CV)] =C~axf(t,CX,CV)

avif(t,x,v) =avi[C2f(t,CX,CV)] =C3av.f(t,CX,CV), i = 1, 2
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A A
-A A

a t f (t,X,V) + V, ax f (t,x,v) + ( El(t,X) + V2Bt,X)) aV, f (t,x,v)

+A

- c~a~f~~cXCV) c-lcv)cafccv

+ CiE1(t,cX) + Br 1 (V2) c1 BttXcx)c3vftcc

= C2atf(t,CX,CV) + C_2 W V) xaf(t,CX,W))

"+ (c-i E1 (t,cx) + C-'wC2B~~x) c-1 1 f~tcx) xvi~,w) c

"+ (c-1 E2 (t,CX)_CVJ)-C- B-2t1 Bcxcx)cCaa2 f2tfcx,w) cv

-c2(atf + + [(E +C2aftcXBW)Vf1Itcxw

tit,)= t(c-'El(t,cx) + -I ~ W ~~xw

- c-latBittccx)
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= c-i [-47rjl (t,cx)]

= -4n[c'1jl(tcx)]

= -4xJj(t,x), and as claimed,

= ( f, E, B) solves (RVM) with c = 1.

We note here that the modified problem admits the same scaling. To see

this, suppose (f, E, B ) solves (RVM~) for some value of c > 1. Then the

Vlasov equation and the expressions for - and j are the same as those

in (RVM) with f, E and B replaced by f, E and B. In (RVM~), the

fields are given by

E2 (t,x) = [E2(x-ct) + E-O(x+ct) + -BO(x-ct) - Bo(x+ct)]

C J j 2(t,y)dy

1 0

B(t,x) = •[E,(x-ct) - E9(x+ct) + B°(x-ct) + BO(x+ct)]
2 2

c- I" f 2(t,y)dy + f j -~ ydy J 2(t,y)dy

We define the following:
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f (t,X,V) =C 2f(t,CX,CV)

P(t,x) c'j(t,cx)

E(t,x) c-'E(t,cx)

B(t'x) =C- 1 (t,cx)

With these, we find

E2(t,X) =C'El 2 (t,CX)

--j-[lfocx-ct) + E(xct+ BO(cx-ct) - B(cx+ct)] -

C2- f J 2(t, y)d y

Since E02(X) = E2(O,X) =C'E12(OCX) = c-190(cx), and a similar result
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holds for B(x), we have

E2(t,X) 2 [C-i E2(C(X-t)) + c-lE2(C(X~it)) + c-I BO(c(x-t)) - c-i BO(c(x+t))]

- f J c~ 2(t,y)dy

E0 (X [x-t) + E02(X+t) + B(X-t) - B&(X+t)] - c' 2 (fz~d

E'2 [(X-t) + E2(X+t) + B0P(x-t) - BO(x+t)] - 2nr f 2(t,y)dy

Similarly,

B(t,x) -~[C-1 E (C(x-t)) - C-1 ~c(CX+t)) + C-1 BO(c(x-t)) + c-1 BO(c(x-t))]

cx 00

- I J cj 2(t,y)dy + c J c 2(t,y)dy
-00 cx

= O [E(x-t) - K' (x+t) + &'(x-t) + ~B'(x+t)]

x 00

-2 f c- 2(t,cz)dz + 21c J c- 2(t,czx)dz
-100 x
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E-[rOx-t) - EO(x+t) + •'(x-t) + B(x+t)]

x 00

- j f2(t,y)dy + 2x { j 2 (t,y)dy
.0 X

and so (RVM~) with c = 1 is satisfied.
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